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Abstract. The technique of Brownian dynamics is used to calculate the time and scattering 
vector dependence of the structuring in colloidal systems. The van Hove space-time 
correlation functions and the corresponding intermediate scattering functions are presen- 
ted; the latter are in good qualitative agreement with those obtained experimentally. 

1. Introduction 

The quasi-elastic scattering of slow neutrons has been used as an extremely useful probe 
in the study of the dynamics of liquid systems (e.g. Larsson et a1 1968). From the 
differential scattering cross-section or scattering function one is able, in principle, to 
obtain the space-time correlation functions which in turn represent the basic data from 
which many dynamic properties of the fluid may be calculated (Chen 1971, p 116). 
Furthermore, measurement of the incoherent and coherent scattering cross-sections 
allows a separation of the correlation function into distinct and self components. 

On the theoretical side, the direct computer simulation of the molecular motion has 
considerably elucidated the complex dynamical properties of liquids. Molecular 
dynamics (MD) calculations have shown that such computer simulation techniques are 
able to predict the results of neutron scattering experiments (Rahman 1964, Harp and 
Berne 1970, Levesque and Verlet 1970); in fact MD can often provide much more detail 
than the corresponding experiment (Zwanzig 1965). 

In the study of colloidal solutions, where one is usually dealing with particle 
diameters and interparticle spacings several orders of magnitude larger than those in 
simpler molecular fluids, a more appropriate probe for measuring the dynamic proper- 
ties is visible light. In fact, quasi-elastic light scattering (QELS), with one-line cor- 
relation of the intensity fluctuations of the scattering light, has become widely used for 
investigating the dynamics of colloidal systems. From the intensity autocorrelation 
function measured in QELS one is able to calculate the intermediate scattering function 
and the space-time correlation function. For truly monodisperse systems, however, 
only coherent scattering is possible and the resolution into self and distinct particle 
correlations cannot be made. Only in the limit of dilute (non-interacting) systems, or 
large scattering vectors for interacting systems, can the self motion be recovered (Pusey 
1978). The usefulness of neutrons in these systems, however, is not to be discounted. 
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Small-angle neutron scattering has been used to determine the time-averaged structure 
of microemulsions and concentrated dispersions of small latex particles (Dvolaitzky et 
a1 1978, Cebula 1979 unpublished). In such concentrated systems, apart from the 
difficulties of multiple scattering, the range of available scattering vectors offered in 
light scattering is very limited and small-angle neutron scattering is an essential 
complementary technique. 

Unlike the case in simple liquids, in colloidal solutions there is a large size difference 
between the background and dispersed particles. This would make an MD simulation, 
over a timescale sufficiently large to follow the dynamics of the dispersed particles, 
prohibitive in terms of computing time. However, an alternative approach called 
Brownian dynamics (HD) has recently been shown to be applicable to the study of the 
dynamic properties of many-particle colloidal systems. This simulation method, which 
essentially treats the particle-background molecule collisions by a stochastic force, 
has computational requirements comparable with those simulation methods usually 
applied to simple liquids. The present authors have reported results of calculations of 
some dynamical properties, such as diflusion coefficients and van Hove space-time 
correlation functions, for dilute dispersions of strongly interacting spheres (Gaylor et a1 
1979a, b). 

In this paper, we use the BD method on the aforementioned system, to calculate the 
time and wavevector dependence of the intermediate scattering function and the 
normalised electric field autocorrelation function as measured in typical QELS experi- 
ments. Unlike the Qms experiments, however, the BD method does allow the evalua- 
tion of self and distinct components. 

2. Computer simulation technique 

2.1. Brownian dynamics method 

In a colloidal solution of interacting particles, the motion of a given particle can be 
thought of as being due to the random collisions with the molecules of the background 
medium (normal Brownian motion), perturbed by the fact that we have a many-particle 
system interacting via hydrodynamic and direct particle-particle interaction forces. 
However, in a dilute system, such as that in this study, one can ignore the tensorial 
hydrodynamic effects. The sampling scheme used in this work, based on the generalised 
Smoluchowski equation (Ermak 1975) and fully investigated in previous studies 
(Gaylor et a1 1979b), gives the following expression from which the trajectory of the ith 
colloidal particle in an N-particle system may be calculated: 

ri(t  f At)  = r j ( t )  +R,(At)  + ( D 0 / k T ) F j ( t ) 4 t .  (1) 

In the above R,(4t)  is the net effect of the particle-background molecule collisions 
during the time interval At;  it is sampled from a Gaussian distribution of zero mean and 
variance SDoht. Do is the free particle diffusion constant. The force F,( t )  is due to the 
interaction of the ith particle with the remaining particles in the system and, assuming 
pairwise additivity, is of the form 
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The pair force is related to the pair potential U by 

where rii = ri - ri, rij = lriji and ri, = r i j ( t ) .  

2.2. Computer simulation method 

The particles are assumed to interact via a pairwise additive screened Coulomb 
potential of the form 

2 7 ~ 5 . 0 ~ ~  d$t 
rij 

U(rij)  = exp[ - Kd(rij - 

where E , (  = 80) is the relative permittivity of the background and E O  is the permittivity of 
free space. Go( =z 0.15 V) is the particle surface potential and the interparticle distance 
rij has been expressed in units of the particle diameter d (  = 4.6 x IO-* m). The Debye 
screening length I / K  for a monovalent electrolyte is given by 

where e is the electronic charge, N A  is Avogadro's number, k is Boltzman's constant, 
n(  = loF3 mol/m3) the bulk electrolyte concentration and T (  = 300 K) is the absolute 
temperature. The quoted parameters are the same as those used in Monte Carlo studies 
of dilute dispersions (van Megen and Snook 1977). Indeed, the equilibrium properties 
calculated with the BD technique converge quite well to the Monte Carlo results (Gaylor 
et a1 1979b). The calculations reported here were done for a dispersion of volume 
fraction # = 0.044°/~. The simulation uses a periodic cube containing N = 256 particles 
and a time step of At = lo-' s was found to be optimum. Although accurate results for 
dynamic properties are obtainable with a smaller number of particles, we use 256 
particles here in order to facilitate the Fourier transformation of the space-time 
correlation functions. The particles were initially arranged on a face centred cubic 
lattice and the first 1000 time-steps discarded in order to minimise the effect of the 
starting configuration. A further 640 time-steps were then generated to give the 
particle trajectories used to calculate the reported dynamical properties. 

3. Results and discussion 

3.1. Time-dependent distribution functions 

In equilibrium statical mechanics extensive use is made of the equilibrium pair 
distribution function or radial distribution function, g ( r ) ,  to describe the structure of the 
system and to calculate the bulk equilibrium properties. This information is also 
accessible experimentally via the static structure factor S ( k ) .  The time dependent 
generalisation of g ( r )  was first proposed for the interpretation of neutron scattering 
experiments (van Hove 1953). Once these van Move space-time correlation functions 
are known for a particular system, many of its dynamical properties are, in principle, 
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accessible (Chen 1971, p 116). In the classical limit this space-time correlation function 
is defined by 

8[r+r i (0 ) - r j ( t ) ] )  

where, given that there is a particle at ri at time t l ,  G(r ,  t )  is the probability density for 
locating a particle at rj = ri + r at a later time t l  + t. For a system in equilibrium the result 
is independent of t l ,  which is here set to zero. One can immediately separate those 
terms for which i = j and i # j ,  giving the self and distinct space-time correlation 
functions, i.e. 

and 

The limiting behaviour of equations (8) and (9) is given below: 

lim G&r, t )  = S ( r )  lim Gd(r,  t )  = pg( r )  
I-0 t+o 

(11) 
1 

r+m r+m V t" r+m 
lim Gs(r,  t )  = lim G,(r, t )  = - = 0 

where p is the number density of the system. 
The van Hove space-time functions are readily calculated from the particle tra- 

jectories discussed in the previous section, using equations (8) and (9). Figures 1 and 2 
show G, and G d  as functions of r/d for several different delay times. Since we are 
dealing with spherically symmetric interparticle forces G(r ,  t )  = G(r, t ) .  It may be seen 
that for this system and the timescale investigated here, there is very little spatial 
overlap of the self and distinct correlation functions. The correlation functions can also 
be seen to be approaching their limiting values as defined in equations (10) and (11). 

lim Gd(r, t )  = lim Gd(r, t )  = p 

3.2. Scattering functions 

The quantity usually extracted from QELS experiments is the normalised electric field 
autocorrelation function 

g'% 7) = (EW, O)E*(k, T ) ) / ( I E ( k  0)l2) (12) 

where E" is the complex conjugate of the electric field E and k is the scattering vector. 
In the absence of multiple scattering, equation (12) may be written as (Pecora 1964) 

g'"(k, T )  = F ( k ,  7 ) / S ( k )  
where 
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X 

r l d  

Figure 1. In Gs(r, t)  plotted against r /d  at: x X x f = s; 0 0 0 f = 6 X l ov4  s; 
t = 1.6 x S. 

Figure 2. van Hove distinct correlation function plotted against r/d at: - t = 0; - - - 
r = 6 ~ 1 0 - ~ ~ ; .  . . t = 1 ~ 6 ~ 1 0 - ~ ~ .  
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is the coherent intermediate scattering function or dynamic structure factor and 

S(k) = F ( k ,  0)  (15) 

F ( k ,  T) = eikVr[G(r, T) - p ]  d r  (16) 

is the (static) structure factor. It follows that (Egelstaff 1967, p 96) 

S(k) = 1 + p  eik"[g(r) - 11 dr. (17) I 
As before, the space-time correlation function can be split into its self and distinct parts 
to yield the self and distinct parts of the intermediate scattering function: 

F,(k, 7) = I eikerG,(r, T) dr 

Fd(k, T) = [ eik"[Gd(r, 7) - p ]  dr. 
J 

Thus from the van Hove functions of the previous section one can calculate the 
scattering functions. Moreover, one can investigate the relative importance of the self 
and distinct components in the experimentally accessible coherent intermediate scat- 
tering function. 

In figure 3, F, and Fd are plotted at different times. At large k values, where Fd is 
virtually zero at all times, F, is quite pronounced at small delay times and decays quite 

I 

I 
I 1 

0 . L  018 1 . 2  
kd 

Figure 3. Self intermediate scattering function (- - -) and distinct intermediate scatter- 
ing function (-) at ( a )  t = 0 s; ( b )  t = s; ( c )  t = 1.6 x s; ( d )  t = 1.6 x s. 
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quickly, In the previous section we saw that the self and distinct correlation functions 
were well separated in coordinate space. This is also reflected here in that the large-k 
behaviour is dominated by F,. For these types of colloidal solutions, this is consistent 
with results of QELS experiments in which it has been possible to extract mean square 
displacements from F ( k ,  T )  at large K. Even around the maximum in Fd the temporal 
relaxation of Fd is seen to be more sluggish than that of F,. The sum of F, and Fd gives 
the coherent intermediate scattering function F(k,  7) displayed in figure 4. 

-- -- .\ I-- 

*-+-x-*2z=?-.-. 
I I I 

-2- 

In figure 5 we plot the logarithm of the normalised field autocorrelation function in a 
form in which QELS data is often presented. For an ideal (infinitely dilute, mono- 
disperse) colloidal solution 

g"'(k, 7 )  = exp( - D o k 2 T )  (20) 

and a plot of In g'l) against k 2 T  yields a straight line independent of k with slope DO, the 
diffusion constant for afreely diffusing particle. As expected fromthe above results and 
clearly illustrated in figure 5 ,  both the linearity of lng"' against k 2 T  and the k 
independence are lost for a colloidal solution of interacting particles. The results are 
shown for three different values of k around the first peak in F(k ,  7). These results are 
in qualitative agreement with QELS experiments (Pusey 1978). 

'\ 

- 

Figure 5. The normalised field autocorrelation function at three different scattering vectors: 
- k k * = 0 . 6 5 ; - - - k * = 0 . 5 5 ; - , - . - k * = 0 . Y 5  ( k * = k d ) .  
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Simulations of this type are possible only by using periodic boundary conditions in 
which an infinite system is replaced by cubic replicas of length L and containing at most 
a few hundred particles. In our case 

L = 1 0 Q ~ N / 6 4  = 67.3d. 

This means, however, that the correlation functions are truncated at r = L/2 ,  making 
the Fourier transformed results unreliable at small values of k.  Methods are presently 
being investigated to make this region of k space accessible. 
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